小众AI

supervision
supervision - 好用的计算机视觉 AI 工具库
Supervision库是一款出色的Python计算机视觉低代码工具,其设计初衷在于为用户提供一个便捷且高效的接口,用以处理数据集以及直观地展示检测结果。简化了对象检测、分类、标注、跟踪等计算机视觉的开发流程。开发者仅需加载数据集和模型,就能轻松实现对图像和视频进行检测、统计某区域的被检测数量等操作。
  官网   代码仓

Supervision库是一款出色的Python计算机视觉低代码工具,其设计初衷在于为用户提供一个便捷且高效的接口,用以处理数据集以及直观地展示检测结果。简化了对象检测、分类、标注、跟踪等计算机视觉的开发流程。开发者仅需加载数据集和模型,就能轻松实现对图像和视频进行检测、统计某区域的被检测数量等操作。

supervision.png

主要功能

  • 不同任务的处理: 目标检测与语义分割、目标跟踪、图像分类
  • 数据展示与辅助处理: 颜色设置、识别结果可视化示例、辅助函数
  • 面向实际任务的工具: 越线数量统计、对特定区域进行检测跟踪、切片推理、轨迹平滑

快速开始

模型

Supervision被设计为与模型无关。只需插入任何分类、检测或分割模型。为了方便您,我们已经为最流行的库(如Ultralytics、Transformers库或MMDetection)创建了连接器

import cv2
import supervision as sv
from ultralytics import YOLO

image = cv2.imread(...)
model = YOLO('yolov8s.pt')
result = model(image)[0]
detections = sv.Detections.from_ultralytics(result)

len(detections)
# 5

标注

Supervision 提供了一系列高度可定制的标注功能,让您可以为您的用例构建完美的可视化效果。

import cv2
import supervision as sv

image = cv2.imread(...)
detections = sv.Detections(...)

box_annotator = sv.BoxAnnotator()
annotated_frame = box_annotator.annotate(
    scene=image.copy(),
    detections=detections
)

https://github.com/roboflow/supervision/assets/26109316/691e219c-0565-4403-9218-ab5644f39bce

数据集

Supervision 提供了一套实用工具,允许您以支持的格式之一加载、分割、合并和保存数据集。

import supervision as sv
from roboflow import Roboflow

project = Roboflow().workspace(<WORKSPACE_ID>).project(<PROJECT_ID>)
dataset = project.version(<PROJECT_VERSION>).download("coco")

ds = sv.DetectionDataset.from_coco(
    images_directory_path=f"{dataset.location}/train",
    annotations_path=f"{dataset.location}/train/_annotations.coco.json",
)

path, image, annotation = ds[0]
    # loads image on demand

for path, image, annotation in ds:
    # loads image on demand

更多...


ai-financial-agent
探索人工智能在投资研究中的应用。
Meetily
一个 AI 驱动的会议助手,可捕获实时会议音频、实时转录并生成摘要,同时确保用户隐私。
CHRONOS
CHRONOS是一种新颖的基于检索的时间线摘要 (TLS) 方法,通过迭代提出有关主题和检索到的文档的问题来生成按时间顺序排列的摘要。